Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 368: 128261, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36343779

ABSTRACT

A lab-scale sequencing batch reactor was employed to study simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) when treating municipal wastewater at 10 °C for 158 days. An anaerobic/aerobic configuration that had previously been effective when treating synthetic wastewater was explored, however, these conditions were relatively ineffective for real municipal wastewater. Incorporation of a post-anoxic phase (i.e., anaerobic/aerobic/anoxic) improved nitrogen and phosphorus removals to 91.1 % and 92.4 %, respectively while achieving a simultaneous nitrification and denitrification efficiency of 28.5 %. Activity tests indicated that 15.8 % and 56.0 % of nitrogen were removed by denitrifying phosphorus accumulating organisms in the aerobic phase and heterotrophs using hydrolyzed carbon in the post-anoxic phase, respectively. 16S rRNA gene analysis and stoichiometric ratios indicated the system was rich in phosphorus accumulating organisms (Dechloromonas and Ca. Accumulibacter). Overall, implementation of the post-anoxic phase eliminated carbon uptake for denitrification in the anaerobic phase and was essential to maintaining SNDPR at low temperatures.


Subject(s)
Nitrification , Wastewater , Phosphorus/metabolism , Denitrification , Waste Disposal, Fluid , Temperature , RNA, Ribosomal, 16S/genetics , Sewage , Bioreactors , Nitrogen/metabolism , Carbon/metabolism
2.
Bioresour Technol ; 354: 127177, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35439557

ABSTRACT

Nitrogen removal pathways of simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) at low dissolved oxygen (0.3 mg/L) and temperature (10℃) were explored to understand nitrogen removal mechanisms. Biological nitrogen and phosphorus removal was sustained with total inorganic nitrogen removal, phosphorus removal, and simultaneous nitrification and denitrification (SND) efficiencies of 62.6%, 97.3%, and 31.2%, respectively. The SND was observed in the first 2 h of the aerobic phase and was attributed to denitrifying ordinary heterotrophic organisms using readily biodegradable chemical oxygen demand and denitrifying phosphorus accumulating organisms (DPAOs), which removed 15.1% and 12.2% of influent nitrogen, respectively. A phosphorus accumulating organism (PAO)-rich community was indicated by stoichiometric ratios and supported by 16S rRNA gene analysis, with Dechloromonas, Zoogloea, and Paracoccus as DPAOs, and Ca. Accumulibacter and Tetrasphaera as PAOs. Even though Ca. Competibacter (10.4%) was detected, limited denitrifying glycogen accumulating organism denitrification was observed.


Subject(s)
Nitrification , Phosphorus , Bioreactors , Denitrification , Nitrogen/metabolism , Oxygen , Phosphorus/metabolism , RNA, Ribosomal, 16S , Sewage , Temperature , Waste Disposal, Fluid
3.
Water Res X ; 15: 100131, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35402889

ABSTRACT

Nitrification, the oxidation of ammonia to nitrate via nitrite, is important for many engineered water treatment systems. The sequential steps of this respiratory process are carried out by distinct microbial guilds, including ammonia-oxidizing bacteria (AOB) and archaea (AOA), nitrite-oxidizing bacteria (NOB), and newly discovered members of the genus Nitrospira that conduct complete ammonia oxidation (comammox). Even though all of these nitrifiers have been identified within water treatment systems, their relative contributions to nitrogen cycling are poorly understood. Although AOA contribute to nitrification in many wastewater treatment plants, they are generally outnumbered by AOB. In contrast, AOA and comammox Nitrospira typically dominate relatively low ammonia environments such as drinking water treatment, tertiary wastewater treatment systems, and aquaculture/aquarium filtration. Studies that focus on the abundance of ammonia oxidizers may misconstrue the actual role that distinct nitrifying guilds play in a system. Understanding which ammonia oxidizers are active is useful for further optimization of engineered systems that rely on nitrifiers for ammonia removal. This review highlights known distributions of AOA and comammox Nitrospira in engineered water treatment systems and suggests future research directions that will help assess their contributions to nitrification and identify factors that influence their distributions and activity.

4.
Sci Rep ; 10(1): 9151, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32499485

ABSTRACT

The efficacy of needle-shaped nano-hydroxyapatite (nHA; Ca10(PO4)6(OH)2) as a phosphate (Pi) fertilizer was evaluated as well as its impact on soil and soybean (Glycine max) bacterial and fungal communities. Microbial communities were evaluated in soy fertilized with nHA using ITS (internal transcribed spacer) and 16S rRNA high-throughput gene sequencing. Separate greenhouse growth experiments using agriculturally relevant nHA concentrations and application methods were used to assess plant growth and yield compared with no Pi (-P), soluble Pi (+P), and bulk HA controls. Overall, nHA treatments did not show significantly increased growth, biomass, total plant phosphorus concentrations, or yield compared with no Pi controls. Soil and rhizosphere community structures in controls and nHA treatment groups were similar, with minor shifts in the nHA-containing pots comparable to bulk HA controls at equal concentrations. The implementation of nHA in an agriculturally realistic manner and the resulting poor soy growth advises that contrary to some reports under specialized conditions, this nano-fertilizer may not be a viable alternative to traditional Pi fertilizers. If nano-phosphate fertilizers are to achieve their conjectured agricultural potential, alternative nHAs, with differing morphologies, physicochemical properties, and interactions with the soil matrix could be investigated using the evaluative procedures described.


Subject(s)
Durapatite/pharmacology , Glycine max/microbiology , Microbiota/drug effects , Nanoparticles/chemistry , Bacteria/genetics , Bacteria/isolation & purification , Biomass , Durapatite/chemistry , Fertilizers/analysis , Plant Roots/microbiology , Principal Component Analysis , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Rhizosphere , Soil Microbiology , Glycine max/drug effects , Glycine max/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...